Resistors
Calculate voltage, current resistance and power with Ohms law. Formulas for Resistors in series, Resistors in Parallel and Voltage divider
Ohms and Power law
Voltage(Volt): $V = I \cdot R$ $V = \frac{P}{I}$ $V = \sqrt{P \cdot R}$ |
Current(Ampere): $I = \frac{V}{R}$ $I = \frac{P}{V}$ $I = \sqrt{\frac{P}{R}}$ |
Resistance(Ohm): $R = \frac{V}{I}$ $R = \frac{V^2}{P}$ $R = \frac{P}{I^2}$ |
Power(Watt): $P = V \cdot I $ $P = I^2 \cdot R$ $P = \frac{V^2}{R} $ |
Resistors math example
Values:
- \( R_1 = 100\,\Omega \), \( R_2 = 220\,\Omega \) (in series)
- \( R_3 = 470\,\Omega \) (in parallel with \( R_1 + R_2 \))
- Supply Voltage \( U = 5\,\text{V} \)
Total resistance (\( R_{\text{total}} \)):
$ R_{\text{series}} = R_1 + R_2 $
$ = 100\,\Omega + 220\,\Omega $
$ = 320\,\Omega $
$ \frac{1}{R_{\text{total}}} = \frac{1}{R_{\text{series}}} + \frac{1}{R_3} $
$ = \frac{1}{320} + \frac{1}{470} $
$ \approx 0.00525266 $
$ R_{\text{total}} = \frac{1}{0.00525266} $
$ \approx 190.38\,\Omega $
Total current (\( I_{\text{total}} \)):
$ I_{\text{total}} = \frac{U}{R_{\text{total}}} $
$ = \frac{5\,\text{V}}{190.38\,\Omega} $
$ \approx 0.02626\,\text{A} $
$ = 26.26\,\text{mA} $
Voltage drops:
- Across \( R_1 \) and \( R_2 \):
$ U_{\text{series}} = 5\,\text{V} $
$ U_1 = \frac{R_1}{R_{\text{series}}} \cdot U_{\text{series}} $
$ = \frac{100}{320} \cdot 5\,\text{V} $
$ \approx 1.56\,\text{V} $
$ U_2 = \frac{R_2}{R_{\text{series}}} \cdot U_{\text{series}} $
$ = \frac{220}{320} \cdot 5\,\text{V} $
$ \approx 3.44\,\text{V} $
- Across \( R_3 \):
$ U_3 = 5\,\text{V} $
Current through each resistor:
- Through \( R_1 \) and \( R_2 \):
$ I_{\text{series}} = \frac{U_{\text{series}}}{R_{\text{series}}} $
$ = \frac{5\,\text{V}}{320\,\Omega} $
$ \approx 15.63\,\text{mA} $
- Through \( R_3 \):
$ I_3 = \frac{U_3}{R_3} $
$ = \frac{5\,\text{V}}{470\,\Omega} $
$ \approx 10.64\,\text{mA} $
Power dissipation:
- Power in \( R_1 \):
$ P_1 = I_{\text{series}}^2 \cdot R_1 $
$ = (0.01563\,\text{A})^2 \cdot 100\,\Omega $
$ \approx 24.41\,\text{mW} $
- Power in \( R_2 \):
$ P_2 = I_{\text{series}}^2 \cdot R_2 $
$ = (0.01563\,\text{A})^2 \cdot 220\,\Omega $
$ \approx 53.71\,\text{mW} $
- Power in \( R_3 \):
$ P_3 = \frac{(U_3)^2}{R_3} $
$ = \frac{(5\,\text{V})^2}{470\,\Omega} $
$ \approx 53.19\,\text{mW} $
Total power dissipation (\( P_{\text{total}} \)):
$ P_{\text{total}} = U \cdot I_{\text{total}} $
$ = 5\,\text{V} \cdot 0.02626\,\text{A} $
$ \approx 131.3\,\text{mW} $