Header Image

Resistors

Calculate voltage, current resistance and power with Ohms law. Formulas for Resistors in series, Resistors in Parallel and Voltage divider


Ohms and Power law

Voltage(Volt):

$V = I \cdot R$

$V = \frac{P}{I}$

$V = \sqrt{P \cdot R}$

Current(Ampere):

$I = \frac{V}{R}$

$I = \frac{P}{V}$

$I = \sqrt{\frac{P}{R}}$

Resistance(Ohm):

$R = \frac{V}{I}$

$R = \frac{V^2}{P}$

$R = \frac{P}{I^2}$

Power(Watt):

$P = V \cdot I $

$P = I^2 \cdot R$

$P = \frac{V^2}{R} $


Resistors in series

The total resistance $R_{\text{total}}$ of resistors in series is the sum of their individual resistances:

$R_{\text{total}} = R_1 + R_2 + R_3 + \dots + R_n$


Resistors in Parallel

The total resistance $R_{\text{total}}$ of resistors in parallel is the reciprocal of the sum of their reciprocals:

$R_{\text{total}} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}}$


Voltage divider

The output voltage $V_{\text{out}}$ of a voltage divider with two resistors $R_1$ and $R_2$ is:

$V_{\text{out}} = V_{\text{in}} \cdot \frac{R_2}{R_1 + R_2}$


Resistors math example

Values:

  • \( R_1 = 100\,\Omega \), \( R_2 = 220\,\Omega \) (in series)
  • \( R_3 = 470\,\Omega \) (in parallel with \( R_1 + R_2 \))
  • Supply Voltage \( U = 5\,\text{V} \)

Total resistance (\( R_{\text{total}} \)):

$ R_{\text{series}} = R_1 + R_2 $

$ = 100\,\Omega + 220\,\Omega $

$ = 320\,\Omega $


$ \frac{1}{R_{\text{total}}} = \frac{1}{R_{\text{series}}} + \frac{1}{R_3} $

$ = \frac{1}{320} + \frac{1}{470} $

$ \approx 0.00525266 $

$ R_{\text{total}} = \frac{1}{0.00525266} $

$ \approx 190.38\,\Omega $

Total current (\( I_{\text{total}} \)):

$ I_{\text{total}} = \frac{U}{R_{\text{total}}} $

$ = \frac{5\,\text{V}}{190.38\,\Omega} $

$ \approx 0.02626\,\text{A} $

$ = 26.26\,\text{mA} $

Voltage drops:

  • Across \( R_1 \) and \( R_2 \):

    $ U_{\text{series}} = 5\,\text{V} $

    $ U_1 = \frac{R_1}{R_{\text{series}}} \cdot U_{\text{series}} $

    $ = \frac{100}{320} \cdot 5\,\text{V} $

    $ \approx 1.56\,\text{V} $


    $ U_2 = \frac{R_2}{R_{\text{series}}} \cdot U_{\text{series}} $

    $ = \frac{220}{320} \cdot 5\,\text{V} $

    $ \approx 3.44\,\text{V} $


  • Across \( R_3 \):

    $ U_3 = 5\,\text{V} $


Current through each resistor:

  • Through \( R_1 \) and \( R_2 \):

    $ I_{\text{series}} = \frac{U_{\text{series}}}{R_{\text{series}}} $

    $ = \frac{5\,\text{V}}{320\,\Omega} $

    $ \approx 15.63\,\text{mA} $


  • Through \( R_3 \):

    $ I_3 = \frac{U_3}{R_3} $

    $ = \frac{5\,\text{V}}{470\,\Omega} $

    $ \approx 10.64\,\text{mA} $


Power dissipation:

  • Power in \( R_1 \):

    $ P_1 = I_{\text{series}}^2 \cdot R_1 $

    $ = (0.01563\,\text{A})^2 \cdot 100\,\Omega $

    $ \approx 24.41\,\text{mW} $


  • Power in \( R_2 \):

    $ P_2 = I_{\text{series}}^2 \cdot R_2 $

    $ = (0.01563\,\text{A})^2 \cdot 220\,\Omega $

    $ \approx 53.71\,\text{mW} $


  • Power in \( R_3 \):

    $ P_3 = \frac{(U_3)^2}{R_3} $

    $ = \frac{(5\,\text{V})^2}{470\,\Omega} $

    $ \approx 53.19\,\text{mW} $

Total power dissipation (\( P_{\text{total}} \)):

$ P_{\text{total}} = U \cdot I_{\text{total}} $

$ = 5\,\text{V} \cdot 0.02626\,\text{A} $

$ \approx 131.3\,\text{mW} $

Share and enjoy:
  • Print
  • Facebook
  • Twitter
  • email